

EasySpheres Incorporated

Part Number: 10-3005-XX (-XX denotes sphere size)

Version No: 2.4

Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

Issue Date: **22/04/2023**Print Date: **22/04/2023**

L.GHS.USA.EN

SECTION 1 Identification

Product Identifier

Product name	Solder Spheres Sn96.5Ag3.0Cu0.5 (SAC305 Alloy)
Synonyms	SAC305 Solder Spheres
Other means of identification	10-3005-XX (-XX denotes sphere size)

Recommended use of the chemical and restrictions on use

Relevant identified uses	BGA ball replacement and attach

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	EasySpheres Incorporated
Address	12012 SW Powell Butte Hwy Powell Butte Oregon 97753 United States
Telephone	(858) 486-4068
Fax	Not Available
Website	www.easyspheres.com
Email	admin@easyspheres.com

Emergency phone number

Association / Organisation	CHEMTREC 24-Hour Emergency Response
Emergency telephone numbers	(800) 424-9300
Other emergency telephone numbers	8584864068

SECTION 2 Hazard(s) identification

Classification of the substance or mixture

NFPA 704 diamond

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)

Classification

Germ Cell Mutagenicity Category 1A, Acute Toxicity (Oral) Category 4, Sensitisation (Skin) Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 3

Issue Date: **22/04/2023**Print Date: **22/04/2023**

Signal word

Danger

Hazard statement(s)

H340	May cause genetic defects.
H302	Harmful if swallowed.
H317	May cause an allergic skin reaction.
H412	Harmful to aquatic life with long lasting effects.

Hazard(s) not otherwise classified

Not Applicable

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P280	Wear protective gloves and protective clothing.
P261	Avoid breathing dust/fumes.
P264	Wash all exposed external body areas thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P202	Do not handle until all safety precautions have been read and understood.
P272	Contaminated work clothing must not be allowed out of the workplace.

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.
P302+P352	IF ON SKIN: Wash with plenty of water.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P362+P364	Take off contaminated clothing and wash it before reuse.
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.
P330	Rinse mouth.

Precautionary statement(s) Storage

P405	Store locked up.

Precautionary statement(s) Disposal

P501	Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.
------	--

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
7440-31-5	96.5	<u>tin fume</u>
7440-22-4	3	silver
7440-50-8	0.5	copper

SECTION 4 First-aid measures

Description of first aid measures

Solder Spheres | Sn96.5Ag3.0Cu0.5 (SAC305 Alloy)

Issue Date: **22/04/2023**Print Date: **22/04/2023**

Ingestion	 IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. For advice, contact a Poisons Information Centre or a doctor. Urgent hospital treatment is likely to be needed. In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist. If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS. Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise: INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear a protective glove when inducing vomiting by mechanical means.
Inhalation	If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Eye Contact	If this product comes in contact with the eyes: Number Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination).

For poisons (where specific treatment regime is absent):

BASIC TREATMENT

E Catalina and a Catalina and the catali

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- ▶ Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- ▶ Monitor and treat, where necessary, for pulmonary oedema.
- ▶ Monitor and treat, where necessary, for shock.
- ► Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- ▶ Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- ▶ Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- ▶ Drug therapy should be considered for pulmonary oedema.
- ▶ Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- ► Treat seizures with diazepam.
- ▶ Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

Treat symptomatically.

53ag

SECTION 5 Fire-fighting measures

Solder Spheres | Sn96.5Ag3.0Cu0.5 (SAC305 Alloy)

Issue Date: **22/04/2023**Print Date: **22/04/2023**

Extinguishing media

- ▶ There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility

None known.

Special protective equipment and precautions for fire-fighters

t Alast Fire Brigade and tell them location and

Fire Fighting

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- ▶ DO NOT approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard

Non combustible.

Not considered a significant fire risk, however containers may burn.

Decomposition may produce toxic fumes of:

metal oxides

May emit poisonous fumes.

May emit corrosive fumes.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

	Remove all ignition sources.
	▶ Clean up all spills immediately.
	Avoid contact with skin and eyes.
Minor Spills	Control personal contact with the substance, by using protective equipment.
	Use dry clean up procedures and avoid generating dust.
	Place in a suitable, labelled container for waste disposal.
	Environmental hazard - contain spillage.
	Environmental hazard - contain spillage. Moderate hazard.

Major Spills

- CAUTION: Advise personnel in area.Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling

- ► Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.

Page 5 of 17

Version No: 2.4

Solder Spheres | Sn96.5Ag3.0Cu0.5 (SAC305 Alloy)

Issue Date: **22/04/2023**Print Date: **22/04/2023**

- ▶ DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- ► When handling, **DO NOT** eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

- Store in original containers.
- ▶ Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

For major quantities

- Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).
- Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require
 consultation with local authorities.

Conditions for safe storage, including any incompatibilities

Suitable container

Storage incompatibility

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

Inorganic derivative of Group 11 metal.

Derivative of electronegative metal.

Derivative of electropositive metal.

- WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially
 explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides
- Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride.
- These trifluorides are hypergolic oxidisers. They ignite on contact (without external source of heat or ignition) with recognised fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition.
- The state of subdivision may affect the results.
- · Silver or silver salts readily form explosive silver fulminate in the presence of both nitric acid and ethanol. The resulting fulminate is much more sensitive and a more powerful detonator than mercuric fulminate.
- · Silver and its compounds and salts may also form explosive compounds in the presence of acetylene and nitromethane.
- · Silver is incompatible with oxalic or tartaric acids, since the silver salts decompose on heating. Silver oxalate explodes at 140 deg C, and silver tartrate loses carbon dioxide

Silver solutions used in photography can become explosive under a variety of conditions. Ammoniacal silver nitrate solutions, on storage, heating or evaporation eventually deposit silver nitride ('fulminating silver). Silver nitrate and ethanol may give silver fulminate, and in contact with azides or hydrazine, silver azide. These are all dangerously sensitive explosives and detonators. Addition of ammonia solution to silver containing solutions does not directly produce explosive precipitates, but these are formed at pH values above 12.9, produced by addition of alkali, or by dissolution of silver oxide in ammonia

- X Must not be stored together
- May be stored together with specific preventions
- May be stored together

Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly.

SECTION 8 Exposure controls / personal protection

Control parameters

Solder Spheres | Sn96.5Ag3.0Cu0.5 (SAC305 Alloy)

Page 6 of 17

Issue Date: **22/04/2023**Print Date: **22/04/2023**

INGREDIENT DATA

INGREDIENT DATA						
Source	Ingredient	Material name	TWA	STEL	Peak	Notes
US OSHA Permissible Exposure Limits (PELs) Table Z-1	tin fume	Particulates Not Otherwise Regulated (PNOR)- Respirable fraction	5 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	tin fume	Particulates Not Otherwise Regulated (PNOR)- Total dust	15 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	tin fume	Inert or Nuisance Dust: Total Dust	15 mg/m3 / 50 mppcf	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	tin fume	Inert or Nuisance Dust: Respirable fraction	5 mg/m3 / 15 mppcf	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	tin fume	Tin	2 mg/m3	Not Available	Not Available	[*Note: The REL also applies to other inorganic tin compounds (as Sn) except tin oxides.]
US OSHA Permissible Exposure Limits (PELs) Table Z-1	silver	Particulates Not Otherwise Regulated (PNOR)- Respirable fraction	5 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	silver	Particulates Not Otherwise Regulated (PNOR)- Total dust	15 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	silver	Silver, metal and soluble compounds (as Ag)	0.01 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	silver	Inert or Nuisance Dust: Respirable fraction	5 mg/m3 / 15 mppcf	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	silver	Inert or Nuisance Dust: Total Dust	15 mg/m3 / 50 mppcf	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	silver	Silver (metal dust and soluble compounds, as Ag)	0.01 mg/m3	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	silver	Particulates not otherwise regulated	Not Available	Not Available	Not Available	See Appendix D
US OSHA Permissible Exposure Limits (PELs) Table Z-1	copper	Copper- Fume (as Cu)	0.1 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	copper	Copper- Dusts and mists (as Cu)	1 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	copper	Inert or Nuisance Dust: Total Dust	15 mg/m3 / 50 mppcf	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	copper	Inert or Nuisance Dust: Respirable fraction	5 mg/m3 / 15 mppcf	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	copper	Copper (dusts and mists, as Cu)	1 mg/m3	Not Available	Not Available	[*Note: The REL also applies to other copper compounds (as Cu) except Copper fume.]

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
tin fume	6 mg/m3	67 mg/m3	400 mg/m3
silver	0.3 mg/m3	170 mg/m3	990 mg/m3
copper	3 mg/m3	33 mg/m3	200 mg/m3

Ingredient	Original IDLH	Revised IDLH
tin fume	Not Available	Not Available
silver	10 mg/m3	Not Available
copper	100 mg/m3	Not Available

Solder Spheres | Sn96.5Ag3.0Cu0.5 (SAC305 Alloy)

Issue Date: 22/04/2023 Print Date: 22/04/2023

MATERIAL DATA

The adopted TLV-TWA for silver dust and fumes is 0.1 mg/m3 and for the more toxic soluble silver compounds the adopted value is 0.01 mg/m3. Cases of argyria (a slate to blue-grey discolouration of epithelial tissues) have been recorded when workers were exposed to silver nitrate at concentrations of 0.1 mg/m3 (as silver). Exposure to very high concentrations of silver fume has caused diffuse pulmonary fibrosis. Percutaneous absorption of silver compounds is reported to have resulted in allergy. Based on a 25% retention upon inhalation and a 10 m3/day respiratory volume, exposure to 0.1 mg/m3 (TWA) would result in total deposition of no more than 1.5 gms in 25 years.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used

Individual protection measures, such as personal protective equipment

Eye and face protection

- Safety glasses with side shields.
 - Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Issue Date: 22/04/2023 Print Date: 22/04/2023

NOTE:

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact.
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene.
- nitrile rubber.
- butyl rubber.
- In fluorocaoutchouc.
- polyvinyl chloride.

Gloves should be examined for wear and/ or degradation constantly.

Body protection

Hands/feet protection

See Other protection below

Other protection

- Overalls.
- P.V.C apron. Barrier cream.
- Skin cleansing cream.
- ▶ Eve wash unit

Respiratory protection

Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	P1	-	PAPR-P1
,	Air-line*	-	-
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

Solder Spheres | Sn96.5Ag3.0Cu0.5 (SAC305 Alloy)

Issue Date: **22/04/2023**Print Date: **22/04/2023**

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- · Use approved positive flow mask if significant quantities of dust becomes airborne.
- · Try to avoid creating dust conditions.

Class P2 particulate filters are used for protection against mechanically and thermally generated particulates or both.

P2 is a respiratory filter rating under various international standards, Filters at least 94% of airborne particles Suitable for:

- · Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.
- · Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke.
- · Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS

SECTION 9 Physical and chemical properties

formation on basic phy	sical and chemical prop	erties	
Appearance	Light sensitive. Gray		
Physical state	Solid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Available	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.

Page 10 of 17

Version No: 2.4

Solder Spheres | Sn96.5Aq3.0Cu0.5 (SAC305 Alloy)

Issue Date: **22/04/2023**Print Date: **22/04/2023**

Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Inhaled

Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

Ingestion

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Not normally a hazard due to the physical form of product. The material is a physical irritant to the gastro-intestinal tract

Skin Contact

Skin contact is not thought to produce harmful health effects (as classified under EC Directives using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers

Chronic

Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyperresponsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

There is sufficient evidence to provide a strong presumption that human exposure to the material may produce heritable genetic damage.

There is sufficient evidence to provide a strong presumption that human exposure to the material may result in the development of heritable genetic damage, generally on the basis of

- appropriate animal studies,
- other relevant information

Solder Spheres | Sn96.5Aq3.0Cu0.5 (SAC305 Alloy)

Issue Date: **22/04/2023**Print Date: **22/04/2023**

Silver is one of the most physically and physiologically cumulative of the elements. Chronic exposure to silver salts may cause argyria, a permanent ashen-grey discolouration of the skin, conjunctiva and internal organs (due to the deposit of an insoluble albuminate of silver).

The respiratory tract may also be a site of local argyria (following chronic inhalation exposures) with a mild chronic bronchitis being the only obvious symptom.

Sub-chronic exposure to a substance containing silver results in elevated alkaline phosphatase levels along with pigmentation of the tissues and organs. These effects are commonly observed in studies on silver.

Organ and tissue pigmentation appears to be an intrinsic property of silver ions, constituting an early marker of silver toxicity. This effect is therefore taken into consideration for the derivation of toxicicological reference values.

The lowest NOAELs for the medium- and long-term toxicity of silver ions were based respectively on the 90-day study of rats conducted with silver sodium hydrogen and zirconium phosphate and on the 105-week combined chronic study on rats conducted with silver-zinc zeolite. These NOAELs were recalculated to take account of the silver content of the substance tested and the rate of release of the silver ions.

In order to derive the toxicological reference values, an oral absorption of 5% and a safety factor of 100 (10 for intra-species variability and 10 for inter-species variability) were used.

In the absence of any observed acute toxicity effect, it is not possible to define a toxicity reference value for short-term exposure. The conservative approach set out in the European assessment is to use the medium-term acceptable exposure limit (AEL) as the short-term AEL. This value is based on the no observed effect level in rats exposed for 90 days.

- \cdot Short/medium-term AEL = 0.3 mg/kg bw/d x 5% / 100 = 0.15 μ g/kg bw/d (silver ion equivalent)
- \cdot Long-term AEL = 0.09 mg/kg bw/d x 5% / 100 = 0.045 μ g/kg bw/d (silver ion equivalent)

In a 2015 opinion on the classification of silver-zinc zeolite, the ECHA Committee for Risk Assessment (RAC) concluded that there was a potential embryotoxic effect in rats at doses where the dams were not severely affected by the treatment. This was manifested primarily by a decrease in the viability of the foetuses/pups, observed to varying degrees in developmental toxicity studies conducted with silver chloride (post-implantation losses, mortality of all offspring, increased incidence of hydronephrosis and cryptorchidism) and silver acetate (slight increase in the percentage of litters with late foetal death) and in a two-generation study with silver-zinc zeolite (lower number of births (F19), higher stillbirth rate, lower live birth rate, reduced pup weight, lower thymus weight, increased incidence of hydronephrosis.

A two-generation study of rats conducted with a different active substance containing silver also observed a lower number of births (F1), along with a smaller live litter size on day 1 (F210), and a lower thymus weight.

Chronic exposure to tin dusts and fume results in "stannosis" a mild form of pneumoconiosis. Chest symptoms develop several years after breathing difficulties (dyspnae) occur. No case of massive fibrosis from over-exposure to tin has been reported. Overexposure to the breathable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity and chest infections. Repeated exposures in the workplace to high levels of fine-divided dusts may produce a condition known as pneumoconiosis, which is the lodgement of any inhaled dusts in the lung, irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50000 inch) are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion, increased chest expansion, weakness and weight loss. As the disease progresses, the cough produces stringy phlegm, vital capacity decreases further, and shortness of breath becomes more severe. Other signs or symptoms include changed breath sounds, reduced oxygen uptake during exercise, emphysema and rarely, pneumothorax (air in the lung cavity). Removing workers from the possibility of further exposure to dust generally stops the progress of lung abnormalities. When there is high potential for worker exposure, examinations at regular period with emphasis on lung function should be performed. Inhaling dust over an extended number of years may cause pneumoconiosis, which is the accumulation of dusts in the lungs and the subsequent tissue reaction. This may or may not be reversible.

Solder Spheres	TOXICITY	IRRITATION	
Sn96.5Ag3.0Cu0.5 (SAC305 Alloy)	Not Available	Not Available	
	TOXICITY	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
tin fume	Inhalation(Rat) LC50: >4.75 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50: >2000 mg/kg ^[1]		
	TOXICITY	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
silver	Inhalation(Rat) LC50: >5.16 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50: >2000 mg/kg ^[2]		
	TOXICITY	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
copper	Inhalation(Rat) LC50: 0.733 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral (Mouse) LD50; 0.7 mg/kg ^[2]		
Legend:		bstances - Acute toxicity 2. Value obtained from manufacturer's SDS.	

Solder Spheres | Sn96.5Ag3.0Cu0.5 (SAC305 Alloy)

Issue Date: **22/04/2023**Print Date: **22/04/2023**

TIN FUME

No significant acute toxicological data identified in literature search.

WARNING: Inhalation of high concentrations of copper fume may cause "metal fume fever", an acute industrial disease of short duration. Symptoms are tiredness, influenza like respiratory tract irritation with fever. for copper and its compounds (typically copper chloride):

Acute toxicity: There are no reliable acute oral toxicity results available. In an acute dermal toxicity study (OECD TG 402), one group of 5 male rats and 5 groups of 5 female rats received doses of 1000, 1500 and 2000 mg/kg bw via dermal application for 24 hours. The LD50 values of copper monochloride were 2,000 mg/kg bw or greater for male (no deaths observed) and 1,224 mg/kg bw for female. Four females died at both 1500 and 2000 mg/kg bw, and one at 1,000 mg/kg bw. Symptom of the hardness of skin, an exudation of hardness site, the formation of scar and reddish changes were observed on application sites in all treated animals. Skin inflammation and injury were also noted. In addition, a reddish or black urine was observed in females at 2,000, 1,500 and 1,000 mg/kg bw. Female rats appeared to be more sensitive than male based on mortality and clinical signs.

No reliable skin/eye irritation studies were available. The acute dermal study with copper monochloride suggests that it has a potential to cause skin irritation.

Repeat dose toxicity: In repeated dose toxicity study performed according to OECD TG 422, copper monochloride was given orally (gavage) to Sprague-Dawley rats for 30 days to males and for 39 - 51 days to females at concentrations of 0, 1.3, 5.0, 20, and 80 mg/kg bw/day. The NOAEL value was 5 and 1.3 mg/kg bw/day for male and female rats, respectively. No deaths were

COPPER

observed in male rats. One treatment-related death was observed in female rats in the high dose group. Erythropoietic toxicity (anaemia) was seen in both sexes at the 80 mg/kg bw/day. The frequency of squamous cell hyperplasia of the forestomach was increased in a dose-dependent manner in male and female rats at all treatment groups, and was statistically significant in males at doses of =20 mg/kg bw/day and in females at doses of =5 mg/kg bw/day doses. The observed effects are considered to be local, non-systemic effect on the forestomach which result from oral (gavage) administration of copper monochloride. **Genotoxicity:** An in vitro genotoxicity study with copper monochloride showed negative results in a bacterial reverse mutation test with Salmonella typhimurium strains (TA 98, TA 100, TA 1535, and TA 1537) with and without S9 mix at concentrations of up to 1,000 ug/plate. An in vitro test for chromosome aberration in Chinese hamster lung (CHL) cells showed that copper monochloride induced structural and numerical aberrations at the concentration of 50, 70 and 100 ug/mL without S9 mix. In the presence of the metabolic activation system, significant increases of structural aberrations were observed at 50 and 70 ug/mL and significant increases of numerical aberrations were observed at 70 ug/mL. In an in vivo mammalian erythrocyte micronucleus assay, all animals dosed (15 - 60 mg/kg bw) with copper monochloride exhibited similar PCE/(PCE+NCE) ratios and MNPCE frequencies compared to those of the negative control animals. Therefore copper monochloride is not an in vivo mutagen. Carcinogenicity: there was insufficient information to evaluate the carcinogenic activity of copper monochloride. Reproductive and developmental toxicity: In the combined repeated dose toxicity study with the reproduction/developmental toxicity screening test (OECD TG 422), copper monochloride was given orally (gavage) to Sprague-Dawley rats for 30 days to males and for 39-51 days to females at concentrations of 0, 1.3, 5.0, 20, and 80 mg/kg bw/day. The NOAEL of copper monochloride for fertility toxicity was 80 mg/kg bw/day for the parental animals. No treatment-related effects were observed on the reproductive organs and the fertility parameters assessed. For developmental toxicity the NOAEL was 20 mg/kg bw/day. Three of 120 pups appeared to have icterus at birth; 4 of 120 pups appeared runted at the highest dose tested (80 mg/kg bw/day).

Solder Spheres | Sn96.5Ag3.0Cu0.5 (SAC305 Alloy) & COPPER

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Acute Toxicity	~	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	×
Mutagenicity	*	Aspiration Hazard	×

Legend: X − Data either not available or does not fill the criteria for classification
✓ − Data available to make classification

SECTION 12 Ecological information

Toxicity

Solder Spheres	Endpoint	Test Duration (hr)	Species	Value	Source
Sn96.5Ag3.0Cu0.5 (SAC305 Alloy)	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
tin fume	NOEC(ECx)	168h	Crustacea	<0.005mg/l	2

Issue Date: 22/04/2023 Print Date: 22/04/2023

	EC50	72h	Algae or other aquatic plants		>0.0192mg/l	2
	LC50	96h	Fish		>0.0124mg/l	2
	Endpoint	Test Duration (hr)	Species	Valu	ıe	Source
silver	EC10(ECx)	72h	Algae or other aquatic plants	0.00	0001mg/l	2
	EC50	96h	Algae or other aquatic plants	0.00	2mg/L	4
	EC50	72h	Algae or other aquatic plants	0.00	0016mg/l	2
	LC50	96h	Fish	0.00	12mg/l	2
	EC50	48h	Crustacea	0.00	01-0.0013mg/l	4
	Endpoint	Test Duration (hr)	Species	Valu	ıe	Source
copper	NOEC(ECx)	48h	Fish	0.00	009mg/l	4
	EC50	96h	Algae or other aquatic plants	0.03	-0.058mg/l	4
	EC50	72h	Algae or other aquatic plants	0.01	1-0.017mg/L	4
		96h	Fish	0.00	28mg/l	2
	LC50	9011				
	EC50	48h	Crustacea	0.00	06-0.0017mg/l	4

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air.

Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities.

Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic species may bind to dissolved ligands or sorb to solid particles in water.

Ecotoxicity: Even though many metals show few toxic effects at physiological pH levels, transformation may introduce new or magnified effects. For silver and its compounds:

Environmental fate:

Silver is a rare but naturally occurring metal, often found deposited as a mineral ore in association with other elements. Emissions from smelting operations, manufacture and disposal of certain photographic and electrical supplies, coal combustion, and cloud seeding are some of the anthropogenic sources of silver in the biosphere. The global biogeochemical movements of silver are characterized by releases to the atmosphere, water, and land by natural and anthropogenic sources, long-range transport of fine particles in the atmosphere, wet and dry deposition, and sorption to soils and sediments.

In general, accumulation of silver by terrestrial plants from soils is low, even if the soil is amended with silver-containing sewage sludge or the plants are grown on tailings from silver mines, where silver accumulates mainly in the root systems.

The ability to accumulate dissolved silver varies widely between species. Some reported bioconcentration factors for marine organisms (calculated as milligrams of silver per kilogram fresh weight organism divided by milligrams of silver per litre of medium) are 210 in diatoms, 240 in brown algae, 330 in mussels, 2300 in scallops, and 18 700 in oysters, whereas bioconcentration factors for freshwater organisms have been reported to range from negligible in bluegills (Lepomis macrochirus) to 60 in daphnids; these values represent uptake of bioavailable silver in laboratory experiments. Laboratory studies with the less toxic silver compounds, such as silver sulfide and silver chloride, reveal that accumulation of silver does not necessarily lead to adverse effects. At concentrations normally encountered in the environment, food-chain biomagnification of silver in aquatic systems is unlikely. Elevated silver concentrations in biota occur in the vicinities of sewage outfalls, electroplating plants, mine waste sites, and silver iodide-seeded areas. Maximum concentrations recorded in field collections, in milligrams total silver per kilogram dry weight (tissue), were 1.5 in marine mammals (liver) (except Alaskan beluga whales Delphinapterus leucas, which had concentrations 2 orders of magnitude higher than those of other marine mammals), 6 in fish (bone), 14 in plants (whole), 30 in annelid worms (whole), 44 in birds (liver), 110 in mushrooms (whole), 185 in bivalve molluscs (soft parts), and 320 in gastropods (whole).

Ecotoxicity:

In general, silver ion was less toxic to freshwater aquatic organisms under conditions of low dissolved silver ion concentration and increasing water pH, hardness, sulfides, and dissolved and particulate organic loadings; under static test conditions, compared with flow-through regimens; and when animals were adequately nourished instead of being starved. Silver ions are very toxic to microorganisms. However, there is generally no strong inhibitory effect on microbial activity in sewage treatment plants because of reduced bioavailability due to rapid complexation and adsorption. Free silver ion was lethal to representative species of sensitive aquatic plants, invertebrates, and teleosts at nominal water concentrations of 1-5 ug/litre. Adverse effects occur on development of trout at concentrations as low as 0.17 ug/litre and on phytoplankton species composition and succession at 0.3-0.6 ug/litre.

A knowledge of the speciation of silver and its consequent bioavailability is crucial to understanding the potential risk of the metal. Measurement of free ionic silver is the only direct method that can be used to assess the likely effects of the metal on organisms. Speciation models can be used to assess the likely proportion of the total silver measured that is bioavailable to organisms. Unlike some other metals, background freshwater concentrations in pristine and most urban areas are well below concentrations causing toxic effects. Levels in most industrialized areas border on the effect concentration, assuming that conditions favour bioavailability. On the basis of available toxicity test results, it is unlikely that bioavailable free silver ions would ever be at sufficiently high concentrations to cause toxicity in marine environments.

Page 14 of 17 Solder Spheres | Sn96.5Ag3.0Cu0.5 (SAC305 Alloy)

Issue Date: **22/04/2023**Print Date: **22/04/2023**

No data were found on effects of silver on wild birds or mammals. Silver was harmful to poultry (tested as silver nitrate) at concentrations as low as 100 mg total silver/litre in drinking-water or 200 mg total silver/kg in diets. Sensitive laboratory mammals were adversely affected at total silver concentrations (added as silver nitrate) as low as 250 ug/litre in drinking-water (brain histopathology), 6 mg/kg in diet (high accumulations in kidneys and liver), or 13.9 mg/kg body weight (lethality).

Silver and Silver Compounds; Concise International Chemical Assessment Document (CICAD) 44 IPCS InChem (WHO)

The transport of silver through estuarine and coastal marine systems is dependent on biological uptake and incorporation. Uptake by phytoplankton is rapid, in proportion to silver concentration and inversely proportional to salinity. In contrast to studies performed with other toxic metals, sliver availability appears to be controlled by both the free silver ion concentration and the concentration of other silver complexes. Silver incorporated by phytoplankton is not lost as salinity increase; as a result silver associated with cellular material is largely retained within the estuary. Phytoplankton exhibit a variable sensitivity to silver. Sensitive species exhibit a marked delay in the onset of growth in response to silver at low concentrations, even though maximum growth rates are similar to controls. A delay in the onset of growth reduces the ability of a population to respond to short-term favourable conditions and to succeed within th community.

James G. Saunders and George R Abbe: Aquatic Toxicology and Environmental Fate; ASTM STP 1007, 1989, pp 5-18

Tin may exist in either divalent (Sn2+) or tetravalent (Sn4+) cationic (positively charged) ions under environmental conditions. Tin(II) dominates in reduced (oxygen-poor) water, and will readily precipitate as a sulfide (SnS) or as a hydroxide (Sn(OH)2) in alkaline water. Tin(IV) readily hydrolyses, and can precipitate as a hydroxide. The solubility product of Sn(OH)4 has been measured at approximately 10 exp(-56) g/L at 25 °C. In general, tin(IV) would be expected to be the only stable ionic species in the weathering cycle.

Tin in water may partition to soils and sediments. Cations such as Sn2+ and Sn4+ will generally be adsorbed by soils to some extent, which reduces their mobility. Tin is generally regarded as being relatively immobile in the environment. However, tin may be transported in water if it partitions to suspended sediments, but the significance of this mechanism has not been studied in detail. Transfer coefficients for tin in a soil-plant system were reported to be 0.01-0.1.

A bioconcentration factor (BCF) relates the concentration of a chemical in plants and animals to the concentration of the chemical in the medium in which they live. It was estimated that the BCFs of inorganic tin were 100, 1,000, and 3,000 for marine and freshwater plants, invertebrates, and fish, respectively. Marine algae can bioconcentrate tin(IV) ion by a factor of 1,900.

Inorganic tin cannot be degraded in the environment, but may undergo oxidation-reduction, ligand exchange, and precipitation reactions. It has been established that inorganic tin can be transformed into organometallic forms by microbial methylation. Inorganic tin may also be converted to stannane (H4Sn) in extremely anaerobic (oxygen-poor) conditions by macroalgae.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

Mobility in soil

Ingredient	Mobility	
	No Data available for all ingredients	

SECTION 13 Disposal considerations

Waste treatment methods

- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise

Product / Packaging disposal

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- ▶ Bury residue in an authorised landfill.
- ▶ Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant NO

Shipping container and transport vehicle placarding and labeling may vary from the below information. Products that are regulated for transport will be packaged and marked as Dangerous Goods in Excepted Quantities according to US DOT, IATA and IMDG regulations. In case of reshipment, it is the responsibility of the shipper to determine the appropriate labels and markings in accordance with applicable transport regulations.

Issue Date: **22/04/2023**Print Date: **22/04/2023**

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
tin fume	Not Available
silver	Not Available
copper	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type
tin fume	Not Available
silver	Not Available
copper	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

tin fume is found on the following regulatory lists

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5

US - Massachusetts - Right To Know Listed Chemicals

US DOE Temporary Emergency Exposure Limits (TEELs)

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Limits (PELs) Table Z-1

US OSHA Permissible Exposure Limits (PELs) Table Z-3

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

silver is found on the following regulatory lists

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5

US - Massachusetts - Right To Know Listed Chemicals

US CWA (Clean Water Act) - Priority Pollutants

US CWA (Clean Water Act) - Toxic Pollutants

US DOE Temporary Emergency Exposure Limits (TEELs)

US EPA Integrated Risk Information System (IRIS)

US EPCRA Section 313 Chemical List

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Limits (PELs) Table Z-1

US OSHA Permissible Exposure Limits (PELs) Table Z-3

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

copper is found on the following regulatory lists

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5

US - Massachusetts - Right To Know Listed Chemicals

US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)

US CWA (Clean Water Act) - Priority Pollutants

US CWA (Clean Water Act) - Toxic Pollutants

US DOE Temporary Emergency Exposure Limits (TEELs)

US EPA Integrated Risk Information System (IRIS)

US EPCRA Section 313 Chemical List

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Limits (PELs) Table Z-1 US OSHA Permissible Exposure Limits (PELs) Table Z-3

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Section 311/312 hazard categories

Flammable (Gases, Aerosols, Liquids, or Solids)	No
Gas under pressure	No

Page 16 of 17 Solder Spheres | Sn96.5Ag3.0Cu0.5 (SAC305 Alloy)

Issue Date: 22/04/2023 Print Date: 22/04/2023

Explosive	No
Self-heating	No
Pyrophoric (Liquid or Solid)	No
Pyrophoric Gas	No
Corrosive to metal	No
Oxidizer (Liquid, Solid or Gas)	No
Organic Peroxide	No
Self-reactive	No
n contact with water emits flammable gas	No
Combustible Dust	No
Carcinogenicity	No
Acute toxicity (any route of exposure)	Yes
Reproductive toxicity	No
Skin Corrosion or Irritation	No
Respiratory or Skin Sensitization	Yes
Serious eye damage or eye irritation	No
Specific target organ toxicity (single or repeated exposure)	No
Aspiration Hazard	No
Germ cell mutagenicity	Yes
Simple Asphyxiant	No
Hazards Not Otherwise Classified	No

US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4)

Name	Reportable Quantity in Pounds (lb)	Reportable Quantity in kg
silver	1000	454
copper	5000	2270

State Regulations

US. California Proposition 65

None listed

National Inventory Status

National inventory Status	
National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (tin fume; silver; copper)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (tin fume; silver; copper)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

Solder Spheres | Sn96.5Ag3.0Cu0.5 (SAC305 Alloy)

Issue Date: **22/04/2023**Print Date: **22/04/2023**

SECTION 16 Other information

Revision Date	22/04/2023
Initial Date	23/04/2023

Other information

Ingredients with multiple cas numbers

Name	CAS No
copper	7440-50-8, 133353-46-5, 133353-47-6, 195161-80-9, 65555-90-0, 72514-83-1, 1441640-38-5, 1993435-25-8, 2056901-56-3

Classification of the preparation and its individual components has drawn on official and authoritative sources using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors

BEI: Biological Exposure Index
AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory
INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances